

Introduction	Methods		Results		Discussion	
Context Objective	Site	Leaf Tree	Leaf	Tree	Factors	Drivers

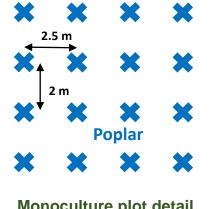
- Water becomes a scarce resource under temperate latitudes
 - Mixture plantations have the potential to optimize the quantitative use of this resource
- Water may be used more efficiently by the trees (to produce biomass) as compared to a monoculture because of niche complementarity
 - This potential has seldom been demonstrated

Introduction	Methods	Results	Discussion	
Context Objective	Site Leaf Tree	Leaf Tree	Factors Drivers	

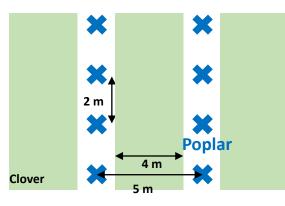
To determine if species mixing has an impact on poplar WUE and if the potentially highlighted differences could be found independently of scale, spatial (leaf and tree level) and temporal (instantaneous, leaf lifetime, growing season)

Hypotheses

The species interactions will allow the poplars in the mixtures to increase WUE compared to the poplars in monoculture thanks to:


(1) a reduction in competition

(2) and / or a facilitation effect due to the presence of the N_2 -fixing species in mixtures



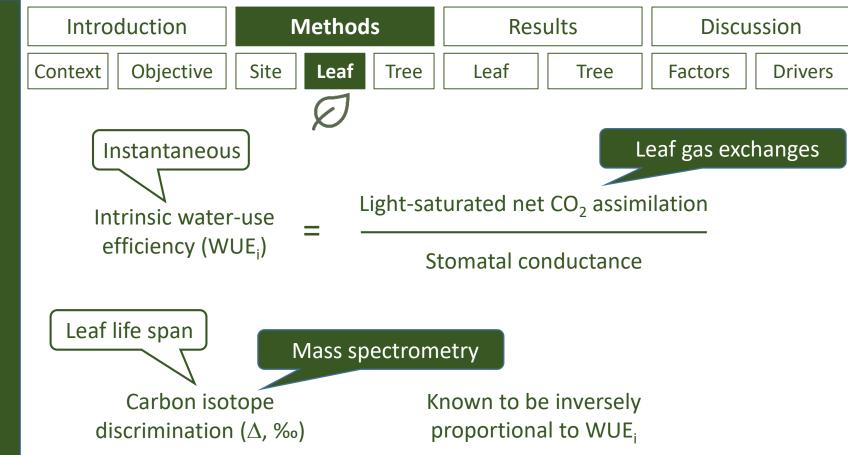
- > Three ha plantation in northeastern France, installed in 2014
- Three treatments:

Monoculture plot detail

Forest mixture plot detail

Agroforestry plot detail

> Twelve poplar trees per treatment



8th IUFRO International Poplar Symposium – October, 5

8th IUFRO International Poplar Symposium – October, 5

Introduction Methods

Site

s Results

Discussion

Context

Objective

Leaf

Tree

Leaf

Tree

Factors

Drivers

Growing season 2020

Transpiration water-use = efficiency (WUE_T)

Allometric equations

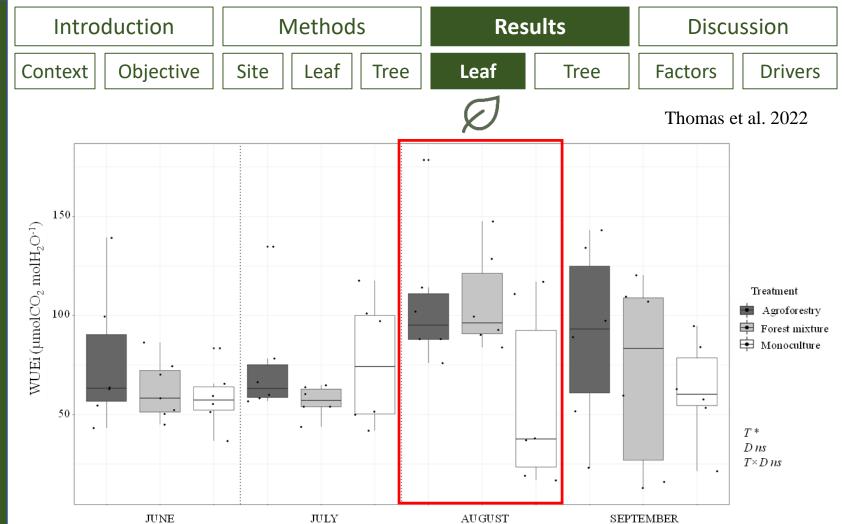
Biomass increment

Transpiration

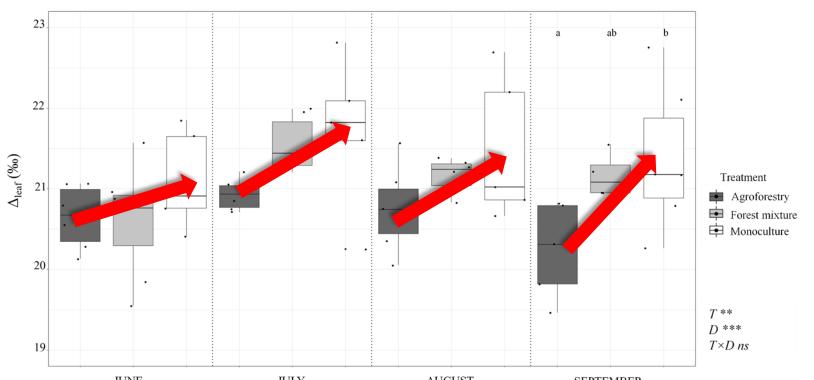
Sap flow measurements

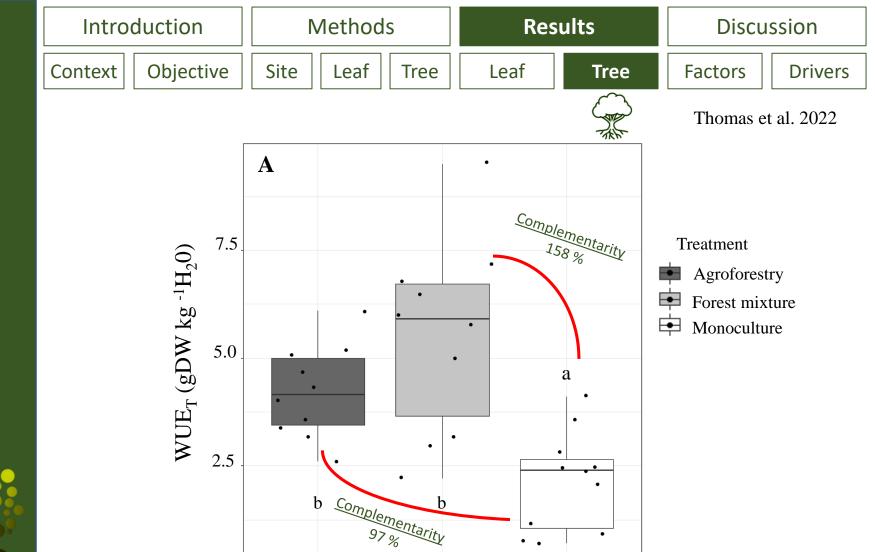
Stem microcores → Mass spectrometry

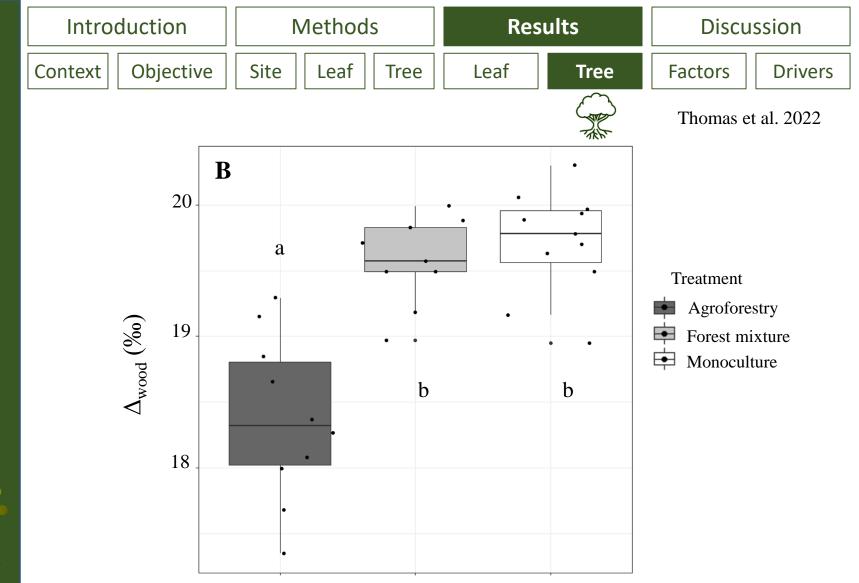
Ring carbon isotope discrimination (Δ_{wood} , %)


Known to be inversely proportional to WUE_T

Growing season 2020




- > WUE, higher in the agroforestry than in the monoculture
- \triangleright August: WUE_i \uparrow in the mixtures and \downarrow in the monoculture (gap increase)



 \triangleright WUE_T forest mixture \gt WUE_T agroforestry \gt WUE_T monoculture

Introduction	ivietnods	Results	Discussion		
Context Objective	Site Leaf Tree	Leaf Tree	Factors Drivers		

- > Poplars in both mixture types showed higher WUE compared to the monoculture
- > An f of WUE has been commonly observed in response to a decrease in water availability

				Cocozza et al. 2011						
	JUNE			JULY			AUGUST			
	AF	FM	Mono	AF	FM	Mono	AF	FM	Mono	
$\Psi_{ ext{predawn}}$ (MPa)	-0.15 a ± 0.01	-0.19 ± 6	-0.25 ± b 0.02	-0.18 ± 0.02	a (-0.15 ± 0.01	$a = \begin{pmatrix} -0.35 \pm \\ 0.02 \end{pmatrix}^{b}$	-0.29 ± 0.02	a -0.32 ± a 0.01	-0.34 ± 0.01	a

... but there was not water limitation

Bonhomme et al. 2008, Fichot et al. 2009, 2010,

- A higher N supply in mixtures than in monoculture can fincrease WUE in poplars

 Ripullone et al. 2004

 ... but there was no difference in leaf [N] between poplars in mixtures and monoculture
- ➤ Difference in agroforestry probably associated to higher light availability due to lower tree planting density than in the forest plots

IntroductionMethodsResultsDiscussionContextObjectiveSiteLeafTreeLeafTreeFactorsDrivers

- Agroforestry *vs.* Monoculture:

 differences were associated to differences in g₄₀₀ and A_{sat} ...

 and transpiration
- Forest mixture vs. Monoculture:

 differences were associated to differences in g₄₀₀ ...
 and both transpiration and biomass accumulation

Poplar trees are more productive (Thomas et al. 2021) and use water more efficiently (Thomas et al. 2022) in agroforestry than in monoculture!

Thank you!

For more details:

Research paper

Leaf and tree water-use efficiencies of *Populus deltoides* \times *P.* nigra in mixed forest and agroforestry plantations

Anaïs Thomas¹, Nicolas Marron¹, Damien Bonal¹, Séverine Piutti², Erwin Dallé¹ and Pierrick Priault^{10,1,3}

¹AgroParisTech, INRAE, UMR Silva, Université de Lorraine, 54000 Nancy, France; ²INRAE, UMR Laboratoire Agronomie et Environnement (LAE), Université de Lorraine, 54518 Vandœuvre-lès-Nancy, France; ³Corresponding author (pierrick,priault@univ-lorraine.fr)

Received February 4, 2022; accepted July 15, 2022; handling Editor Erich Inselsbacher

